4" - PAPER CONE - 100 mm

Non resonant die cast chassis Ventilated chassis under spider Critically damped paper cone High Loss high compliance rubber Surround Edgewound, flat copper wire Kapton voice coil former Vented pole piece with protection grill Gold plated terminals
> Châssis Zamak moulé - Fond ventilé
> Cône papier traitement amortissant
> Suspension caoutchouc amortissant
> haute compliance
> Bobine sur support Kapton
> Fil cuivre plat sur chant Noyau ventilé avec grille de protection Connectique plaquée or

Designed for high end compact 2 way and satellite systems, this 4^{*} Bass-Midrange driver offers the ultimate in paper cone technology. It features a state of the art curvilinear cone which is critically damped with a visco elastic compound and is coupled to a high loss rubber surround. Special consideration has been taken to ensure the best possible linear response, and an exceptionally natural top end roll-off. Unobstructed venting of the Zamak die cast chassis, coupled with a grill protected, vented pole piece and a soft polymer dustcap all contribute to the dramatic transient response. High power handling results from the flat, edgewound copper coil mounted onto a fiberglass reinforced Kapton voice coil former. Gold plated terminals offer excellent solderability. The "suggested applications" charts indicate various driver loads. The response curves shown on the diagram indicate the predicted low end response of the driver in the suggested box volume (Vb) with surgested port (Dp-Lp).

Ce Boomer-Médium de 100 mm destiné à des systèmes haut de garmme compacts 2 voies et satellites constitue l'aboutissement de la technologie du còne en pulpe de cellulose par l'utilisation d'un cône en papier à profil curviligne traité par un matériau visco-élastique amortissant associê à une suspension en caoutchouc haute compliance. Un soin particulier a êté apporté au châssis Zamak moulé ainsi qu'd la structure magnétique atin d'assurer la meilleure réponse en transitoire ainsi qu'une coupure haute naturelle : chassis ouvert ef ventilé sous le spider, noyau ventilé et cache noyau en polymère souple ultra léger. Sa bonne tenue en puissance résulte de l'utilisation d'une bobine sur support Kapton renforcé fibre de verre en fil de cuivre plat sur chant. La connectique plaquée or permet une excellente soudabilité. Le tableau "Suggested applications" indique différents types de charge. Les courbes publiées correspondent à la réponse dans le grave pour un volume (Vb) et une dimension d'évent donnée (Dp - L).

SPECIFICATIONS			
Technical Characteristics	Symbol	Value	Units
PRIMARY APPLICATION			
Nominal Impedance	Z	8	Ω
Resonance Frequency	Fs	55	Hz
Nominal Power Handling	P	40	W
Sensitivity	E	89	dB
VOICE COIL			
Voice coil diameter	0	25	mm
Minimum Impedance	Zmin	7.7	¢
DC Resistance	Re	6.4	Ω
Voice Coil Inductance	Lbm	0,33	mH
Voice coil Length	h	9.2	mm
Former	-	Kapton	-
Number of layers	n	1	*
MAGNET			
Magnet dimensions	$9 \times \mathrm{h}$	84×15	mm
Magnet weight	m	0,345	kg
Flux density	B	1.1	T
Force factor	BL	6,37	NA ${ }^{+}$
Height of magnetic gap	He	5	mm
Stray flux	Fmag	-	Am ${ }^{\text {a }}$
Linear excursion	$\mathrm{X}_{\text {max }}$	± 2.1	mm
PARAMETERS			
Suspension Compliance	Cms	1,65.10 ${ }^{\text {P }}$	$\mathrm{mN}{ }^{-1}$
Mechanical Q Factor	Qms	3,34	.
Electrical Q Factor	Qes	0,27	-
Total Q Factor	Qts	0,25	-
Mechanical Resistance	Rms	0,52	kgs ${ }^{1}$
Moving Mass	Mms	5.10^{-1}	kg
Effective Piston Area	S	0,51.10 ${ }^{\text {d }}$	m^{2}
Volume Equivalent of Air at Cas	Vas	$6.2 .10^{8}$	m^{3}
Mass of speaker	M	0,94	kg

Suggested appucations

