3＂－PAPER CONE－ 75 mm

Paper cone－Textile suspension Solid aluminium phase plug Kapton voice coil former Ferrofluid cooled voice coil Very high efficiency－ $93 \mathrm{~dB} / \mathrm{W} / \mathrm{m}$

Cône papier－suspension toile Ogive aluminium massif Support bobine Kapton Bobine refroidie par ferrofluide Très haut rendement－ $93 \mathrm{~dB} / \mathrm{W} / \mathrm{m}$

This High end cone tweeter uses a strong magnet structure for high efficiency．The ferrofluid cooled Kapton former voice coil ensures good power handling capacity，The phase plug equalizes the high frequencies．Easily coupled with 2nd order crossover as shown Fig 1. Two crossover points are suggested for adequate power handling．

Ce tweeter haut de gamme à cône offre un haut rendement grâce à son système magnétique puissant．Par ailleurs sa bobine sur support Kapton refroidie par ferrofluide lui confere une bonne tenue en puissance．L＇ogive dont il est équipé régularise et adoucit la reproduction dans le haut du spectre．Il peut être filtré au second ordre（ $12 \mathrm{~dB} / \mathrm{Oct}$ ）selon le shéma Fig 1．Deux fréquences de coupure sont proposles afin d＇obtenir la tenue en puissance adéquate．

Response curve reler to page 16

Sensitivity Mag－dB SPL／matt（8．8 ohm load）（ 8.16 oct）（eq）

SPECIFICATIONS			
Technical Characteristics	Symbol	Value	Units
PRIMARY APPLICATION			
Nominal Impedance	Z	8	Q
Resonance Frequency	Fs	700	Hz
Nominal Power Handling	P	80	W
Sensitivity	E	93	dB
VOICE COIL			
Voice coil diameter	0	20	mm
Minimum Impedance	Zmin	8，3	Ω
DC Resistance	Re	6，5	亿
Voice Coil Inductance	Lbm	111	$\mu \mathrm{H}$
Voice coil Length	h	4	mm
Former	．	Kapton	－
Number of layers	n	2	\cdots
MAGNET			
Magnet dimensions	$9 \times \mathrm{h}$	72×15	mm
Magnet weight	m	0，24	kg
Flux density	B	1，15	T
Force factor	BL	－	NA ${ }^{+}$
Height of magnetic gap	He	3	mm
Stray flux	Fmag	－	Am＇
Linear excursion	Xmax	$\stackrel{ }{ }$	mm
PARAMETERS			
Suspension Compliance	Cms	＊	$\mathrm{mN}{ }^{+}$
Mechanical Q Factor	Oms	＊	－
Electrical Q Factor	Qes	＊	－
Total Q Factor	Ots	－	－
Mechanical Resistance	Rms	－	kgs^{-1}
Moving Mass	Mms	\cdots	kg
Effective Piston Area	S	33.10^{-4}	m^{*}
Volume Equivalent of Air at Cas	Vas	\pm	m^{2}
Mass of speaker	M	0，5	kg

SUGGESTED APPLICATIONS
rater to page it to 13

FC	S	\mathbf{L}	C	P
2500	12	0,36	6,6	80
4000	12	0,30	4,8	120

APPLICATION PARAMETERS

Fc	Crossover Frequency	Hz
S	Slope	$\mathrm{dB} /$ Oct．
L	Self－inductance	mH
C	Capacitor	$\mu \mathrm{F}$
P	Nominal Power Handling	W

