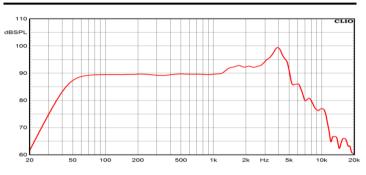
# **HWB160**

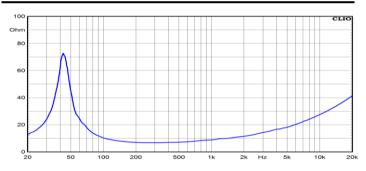


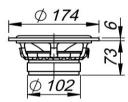
#### SPECIFICATIONS

| Nominal Diameter                 |       | 6,5''- 165 mm                                 |
|----------------------------------|-------|-----------------------------------------------|
| Rated Impedance                  |       | 8 Ohm                                         |
| Nominal Power Handling 1         |       | 80 W                                          |
| Program Power <sup>2</sup>       |       | 160 W                                         |
| Sensitivity <sup>3</sup>         |       | 91 dB                                         |
| Frequency Range <sup>4</sup>     |       | 45-5000 Hz                                    |
| Minimum Impedance                |       | -                                             |
| Gasket Material                  |       | Aluminum                                      |
| Magnet Material                  |       | Ferrite                                       |
| Cone Material                    |       | Doped cellulose fiber                         |
| Cone Shape                       |       | Exponential                                   |
| Surround                         |       | Rubber                                        |
| Suspension                       |       | Cotton fabric                                 |
| Voice Coil Diameter              |       | 1,25 in - 32 mm                               |
| Voice Coil Winding Material      |       | Copper                                        |
| Voice Coil Length                |       | 12 mm - 0,47 in                               |
| Voice Coil Former Material       |       | Kapton                                        |
| Connection type                  |       | -                                             |
| Ferrofluid                       |       | No                                            |
| Magnetic Gap Height              |       | 6 mm - 0,24 in                                |
| Max. Peak to Peak Excursion      |       | -                                             |
| Efficiency Bandwidth Product EBP |       | 105                                           |
| Recommended Loading              |       | Vented Box                                    |
| Volume / Tuning frequency        |       | 19 Lt (dm <sup>3</sup> ) - 0,671 cuft / 45 Hz |
| Maximum recommended frequency    |       | -                                             |
| Version - Part Code              | 8 Ohm | HWB160                                        |
|                                  | 4 Ohm | HWB160-4                                      |
|                                  |       |                                               |


| T/S PARAMETERS                     |      |                                      | 8 Ohm |
|------------------------------------|------|--------------------------------------|-------|
|                                    |      |                                      |       |
| Resonance frequency                | Fs   | 43 Hz                                |       |
| DC Resistance                      | Re   | 5,8 Ohm                              |       |
| Mechanical Q Factor                | Qms  | 4,7                                  |       |
| Electrical Q Factor                | Qes  | 0,41                                 |       |
| Total Q Factor                     | Qts  | 0,37                                 |       |
| BI Factor                          | BI   | 7,3 Tm                               |       |
| Effective Moving Mass              | Mms  | 13,9 g                               |       |
| Equivalent Cas air loaded          | Vas  | 28 lt (dm <sup>3</sup> ) - 0,99 cuft |       |
| Suspension Compliance              | Cms  | -                                    |       |
| Effective Piston Diameter          | D    | 134 mm - 5,28 in                     |       |
| Effective piston area              | Sd   | 141 cm <sup>2</sup> - 21,86 sq in    |       |
| Max. Linear Excursion <sup>5</sup> | Xmax | 4,5 mm - 0,18 in                     |       |
| Voice Coil Inductance @ 1kHz       | Le   | 1,3 mH                               |       |
| Half-space Efficency               | ŋ0   | 0,52 %                               |       |

## 6,5" Ceramic Woofer


**Program Power Rated impedance** Nominal diameter Sensitivity (2,83V/1m) Voice coil diameter **Frequency Range** 


160 W 8 Ohm 6,5"- 165 mm 91 dB 1,25 in - 32 mm 45-5000 Hz

#### FREQUENCY RESPONSE CURVE <sup>6</sup>



#### FREE AIR IMPEDANCE CURVE 7





### MOUNTING AND SHIPPING INFORMATION

| Overall Diameter                 | 174 mm - 6,85 in     |
|----------------------------------|----------------------|
| Baffle Cutout Diameter           | 146 mm - 5,75 in     |
| Flange and Gasket Thickness      | 6 mm - 0,24 in       |
| Total Depth                      | 79 mm - 3,11 in      |
| Bolt Circle Diameter             | 164 mm - 6,46 in     |
| Bolt Holes Quantity and Diameter | 6 / 4,5 mm - 0,18 in |
| Net Weight                       | 1,6 Kg - 3,52 lb     |
| Shipping Units                   | 4 Pcs                |

#### NOTES

<sup>1</sup> Norminal power is determined according to AES2-1984 (r2003) standard.
<sup>2</sup> Program Power is defined as 3 dB greater than the Norminal rating.
<sup>3</sup> Sensitivity represents the averaged value of acoustic output as measured on the forward central axis of cone, at distance 1m, when connected to 2,83V sine wave test signal.
<sup>4</sup> Frequency range is given as the band of frequencies delineated by the lower and upper limits where the output level drops by 10 dB below the rated sensitivity in half space environment.
<sup>6</sup> Inear Math. Xmax is calculated as (Hvc-Hg)/2 + Hg/4 where Hvc is the coil depth and Hg is the gapdepth.
<sup>6</sup> Frequency response curve in the range below 150 Hz is measured on infinite baffle conditions and simulated as per recommended loading in the range below 150 Hz.
<sup>7</sup> Impedance curve is measured in free air conditions at small signals.